lunes, 10 de abril de 2017

Classic 4D Model Of the Discrete Universe (C1). I:Quantum

Tras muchos años de esfuerzos por fin he conseguido que me publiquen un libro.
En esta entrada os dejo el indice y el capitulo 1

Classic 4D Model of the Universe Discrete. I:Quantum

________________________________________________________

INDEX

________________________________________________________

Prologue                                                                                          

1. 4D Model of the Universe                   

1.1 Quantum mechanics .................................................................9
1.2 Constants calculated................................................................10
1.3 Special and general relativity...................................................11
1.4 4D model of the universe.........................................................11

2. Discrete space-time                                                         

2.1 Introduction .............................................................................13
2.2 Definition of time.....................................................................14
2.3 Real and imaginary time..........................................................15
2.4 Conclusion...............................................................................16

3. The origin of llong-range forces

3.1 Introduction ...........................................................................17
3.2 Black holes.............................................................................18
3.3 Quantum universe .................................................................21
3.4 Variation of the gravitational and magnetic forces ...............23
3.5 General expression of the long-range force ..................... ....27
3.6 Conclusion.............................................................................29

4. Mass and charge of the ellectron 

4.1 Introduction ............................................................................31
4.2 Relationship between mass and electric charge
      of the electron ........................................................................31
4.3 Separation of forces................................................................36
4.4 Conclusion..............................................................................38

5. Electromagnetic fielld 

5.1 Magnetic field created by a circular current loop ..................41
5.2 Force between two circular coils ...........................................41
5.3 Electric field ..........................................................................42
5.4 The electromagnetic field.......................................................43
5.5 Electron and Positron..............................................................45
5.6 Conclusion..............................................................................46

6. The origin of up and down quarks 

6.1. Introduction ..........................................................................49
6.2 Mass and charge of the up and down quarks .........................49
6.3 Formation of the up and down quarks....................................50
Formation of the down quark.......................................................51
Formation of the up quark............................................................51
6.4 Up and down antiquarks.........................................................52
6.5 Conclusion..............................................................................52

7. Some fundamentall constants 

7.1 Introduction ..........................................................................55
7.2 The vacuum permittivity e0 .................................................56
7.3 The fine structure constant α ................................................57
7.4 Conclusion............................................................................59

8. Atoms 

8.1 Introduction ..........................................................................61
8.2 Newton and the motion of celestial bodies ..........................62
8.3 The Bohr atom ......................................................................63
8.4 Heisenberg’s uncertainty principle and Bohr atomic model 66
8.5 Hydrogen atom and the Pauli exclusion principle ................68
8.6 Helium atom .........................................................................69
8.7 Configuration and electron orbits .........................................69
Shell 1, 1s2 .................................................................................70
Shell 2, 2S2 2p6..........................................................................70
Shell 3, 3S2 3p6 3d10.................................................................71
Shell 4, 4S2 4p6 4d10 4f14 ........................................................72
8.8 Classical corrections on the Bohr magneton.........................73
8.9 Rotations of the electron.......................................................75
8.10 Conclusion..........................................................................76

9. Magnetic Monopoles 

9.1 Introduction .......................................................................79
9.2 The Gauss’s law ................................................................79
9.3 Rest and motion. ................................................................80
9.4 Bipolarity ............................................................................81
9.5 The magnetic monopole. Electron or positron? .................82
9.6 Conclusion...........................................................................82

10. Composite Particles 

10.1 Introduction .......................................................................83
10.2 Elementary Particles...........................................................84
10.3 Formation of up quarks and down quarks by collisions.....84
10.4 Characteristics of the composite particles..........................85
10.5 The Muon...........................................................................86
Mass...........................................................................................87
Decays.......................................................................................88
Magnetic Momentum................................................................89
10.6 The Pion............................................................................90
Mass..........................................................................................91
Decays.......................................................................................91
10.7 The Neutron. ....................................................................92
Mass. ........................................................................................92
Neutron beta decay....................................................................95
10.8 The Proton.........................................................................95
Mass...........................................................................................95
10.9 Conclusion.........................................................................96

11. Relation between the gravitational

and magnetic fields 

11.1 Introducction.........................................................................99
11.2 Gravitational and magnetic orbits ........................................99
11.3 Planck’s conditions..............................................................101
11.4. Relation between fields.......................................................101
11.5. Conclusion..........................................................................102

12.. Quantum Phenomena 

12.1. Wave–Particle duality as a classic phenomenon..............103
12.2 The quantum tunnelling is a classical phenomenon .........106
Conservation of the angular momentum............................... ...107
12.3. Conclusión........................................................................108

13. Deriving Newton’s gravitational law

 from the Heisenberg’s uncertainty principle 

13.1 Introduction ........................................................................111
13.2 Quantum fluctuation...........................................................112
13.3 Conclusion..........................................................................114

14. Derivation of the Schrödinger 

equation from cllassicall physics

14.1. Introducción.....................................................................115
14.2 Schrödinger Equation.......................................................116
        Particle at rest ..................................................................116
        Particle with Coulomb Potential .....................................118
14.3 Conclusions .....................................................................119
Acknowledgments ................................................................ ..119
References.....................................................…………..…….119

PROLOGUE

     In this book, a singular physical model is presented, where space is formed by four-dimensional atoms, called by the author Planck atoms. Vacuum is formed by resting atoms, while particles are rotating atoms. Different types of particles correspond to different rotation axes. Additionally,
the concept of absolute rest is recovered! 
   On the other hand, it is assumed that the universe is expanding since the Big Bang at light velocity. in four dimensions! According to the author, this results in a reduction of the total gravitational energy, which must be  compensated by the generation of the corresponding Planck atoms, a phenomenon here described as quantum fluctuation. As well, in this process the mass of each atom diminishes by discrete amounts until reaching to a minimum value, while its charge increases up to a maximun value in such a way that the atom energy remains constant at any time. The whole theory is based on Heisenberg’s uncertainty principle, here used as an equality instead of an inequality.
   Astonishingly, the model allows to obtain most physical constants and relate them in a simple manner; among them, the gravitational constant, Boltzmann constant, vacuum permittivity, electron mass and charge, and masses and charges of some quarks. Another interesting conclusion, which is
also supported by other authors, is that our universe is placed inside a black hole. The reader is assumed to be familiar with Planck units and modern physics.

Luis Nuño
Professor
Electromagnetic Theory

_________________________________________________________

1.  4D Model of the Universe

________________________________________________________
The hypothesis that the universe and the elementary particles are formed by atoms of four dimensions, allows us to explain quantum and relativistic phenomena. It is also possible to deduce and calculate the properties of elementary particles, such as mass, electric charge, spin, radius, etc. From the before mentioned hypothesis, the fundamental constants can be calculated, and depend only on the speed of light, c. The Heisenberg Uncertainty Principle must be verified at all times, at both microscopic and macroscopic levels. Most commonly used equations derive from equality in the Heisenberg Uncertainty Principle.

1.1 Quantum mechanics

Quantities which verify the Heisenberg Uncertainty Principle include:
·       the mass of the electron,
·       the electric charge of the electron,
·       the mass and electric charge of up and down quarks,
·    the mass of the proton and neutron, which are proportional to the mass of the electron,
·       the muon mass, which is proportional to the electron mass,
·       the pion mass, which is proportional to the electron mass.
In general, the mass of any particle can be deduced from the mass of the electron, therefore, the electron can be considered as the fundamental particle.
The model allows us to explain from classical physics purely quantum phenomena such as:
·       wave-particle duality,
·       quantum tunnelling,
·       quantum entanglement.

1.2 Constants calculated

The following constants can be calculated according to the speed of light:
·       me   electron mass,
·       qe    electron charge,
·       μ0    permeability of vacuum,
  •   ε0    permittivity of vacuum,
·       mu  up quark mass,
·       md  down quark mass,
·       qu   up quark electric charge,
·       qd   down quark electric charge,
·       a0    Bohr radius.
In turn, constants which depend upon the electron mass include:
·       the mass of the proton,
·       the mass of the neutron,
·       the mass of the muon,
·       the pion mass,
·       the electron magnetic momentum,
·       the muon magnetic momentum.
In addition, it is also possible to deduce Schrodinger´s equation [1], demonstrate the equality between inertial mass and gravitational mass, and relate gravitational and magnetic fields [2].
The model we have developed includes everything from elementary particles such as electrons, photons, quarks etc., up to black holes. All of these are from classical physics.
The model also helps explain concepts that have no classical or quantum relativistic explanation, such as:
·       What is mass?
·       What is the electric charge?
·       What is the spin?
·       What is radiation?
·       What is time?

1.3 Special and  general relativity

Special relativity is reduced to an elemental problem of movement in two dimensions, from which we can deduce:
·       the time dilation,
·       the Lorentz contraction.
From a classical point of view, one can also explain the phenomena of general relativity such as:
·       the deviation of the photon within a gravitational field,
·       the advance of the perihelion of Mercury,
·       the gravitational time dilation,
·       black holes without singularities and the Schwarzschild radius,
·       the deformation of space due to the gravitational field.

1.4 4D model of the universe

The 4D model of the universe uses:
·       a single particle, the Planck atom of 4 spatial dimensions,
  • a constant, the speed of light,
  • an equation, which is the Heisenberg Uncertainty Principle,
  • the principle of Conservation of Energy,
·       the number π.
All constants can be calculated depending on the speed of light, and all of the laws are deduced from the Principle of Conservation of Energy.
The gravitational and electromagnetic forces go together, as they are two different manifestations of the same phenomenon. They converge at the Planck scale. The strong and weak nuclear forces are due to variations of energy, hence, their short ranges. Matter always tends to the state of minimum energy.
The force carriers such as photons and other virtual particles are not necessary.
Newton´s Gravitation and Heisenberg’s Uncertainty Principle are two different aspects of the same formula, rather than different formulas. However, we observe different things, due to the size difference between an atom and a star. The decay of some particles, such as the muon, the pion, and neutron beta decay, can be explained by classical elementary rules.